首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1450465篇
  免费   27504篇
  国内免费   6895篇
电工技术   33798篇
综合类   6354篇
化学工业   254023篇
金属工艺   63595篇
机械仪表   41229篇
建筑科学   42478篇
矿业工程   11405篇
能源动力   49817篇
轻工业   106386篇
水利工程   14777篇
石油天然气   36683篇
武器工业   134篇
无线电   194798篇
一般工业技术   276558篇
冶金工业   151708篇
原子能技术   34020篇
自动化技术   167101篇
  2021年   14570篇
  2020年   11843篇
  2019年   14602篇
  2018年   15596篇
  2017年   14882篇
  2016年   21286篇
  2015年   17388篇
  2014年   28697篇
  2013年   87982篇
  2012年   34712篇
  2011年   46963篇
  2010年   42306篇
  2009年   50840篇
  2008年   44038篇
  2007年   41180篇
  2006年   44035篇
  2005年   38926篇
  2004年   40949篇
  2003年   40167篇
  2002年   37885篇
  2001年   34192篇
  2000年   32143篇
  1999年   31459篇
  1998年   37923篇
  1997年   34683篇
  1996年   31331篇
  1995年   29366篇
  1994年   27567篇
  1993年   27446篇
  1992年   25498篇
  1991年   22639篇
  1990年   23056篇
  1989年   22052篇
  1988年   20606篇
  1987年   18863篇
  1986年   18304篇
  1985年   21656篇
  1984年   21929篇
  1983年   19882篇
  1982年   18944篇
  1981年   19017篇
  1980年   17671篇
  1979年   18199篇
  1978年   17506篇
  1977年   17219篇
  1976年   18055篇
  1975年   15805篇
  1974年   15290篇
  1973年   15384篇
  1972年   12951篇
排序方式: 共有10000条查询结果,搜索用时 78 毫秒
991.
The current research work presents a facile and cost–effective co-precipitation method to prepare doped (Co & Fe) CuO and undoped CuO nanostructures without usage of any type of surfactant or capping agents. The structural analysis reveals monoclinic crystal structure of synthesized pure CuO and doped-CuO nanostructures. The effect of different morphologies on the performance of supercapacitors has been found in CV (cyclic voltammetry) and GCD (galvanic charge discharge) investigations. The specific capacitances have been obtained 156 (±5) Fg?1, 168(±5) Fg?1 and 186 (±5) Fg?1 for CuO, Co-doped CuO and Fe-doped CuO electrodes, respectively at scan rate of 5 mVs?1, while it is found to be 114 (±5) Fg?1, 136 (±5) Fg?1 and 170 (±5) Fg?1 for CuO, Co–CuO and Fe–CuO, respectively at 0.5 Ag-1 as calculated from the GCD. The super capacitive performance of the Fe–CuO nanorods is mainly attributed to the synergism that evolves between CuO and Fe metal ion. The Fe-doped CuO with its nanorods like morphology provides superior specific capacitance value and excellent cyclic stability among all studied nanostructured electrodes. Consequently, it motivates to the use of Fe-doped CuO nanostructures as electrode material in the next generation energy storage devices.  相似文献   
992.
Theoretical Foundations of Chemical Engineering - An environmentally friendly extraction system based on polypropylene glycol 425 and sodium chloride for the extraction of Pt(IV) and Pd(II) from...  相似文献   
993.
Journal of Chemical Ecology - The Oriental fruit fly, Bactrocera dorsalis (Hendel) is an economically devastating pest of fruit crops across the globe with stringent quarantine restrictions to...  相似文献   
994.
Laminopathies are a clinically heterogeneous group of disorders caused by mutations in the LMNA gene, which encodes the nuclear envelope proteins lamins A and C. The most frequent diseases associated with LMNA mutations are characterized by skeletal and cardiac involvement, and include autosomal dominant Emery–Dreifuss muscular dystrophy (EDMD), limb-girdle muscular dystrophy type 1B, and LMNA-related congenital muscular dystrophy (LMNA-CMD). Although the exact pathophysiological mechanisms responsible for LMNA-CMD are not yet understood, severe contracture and muscle atrophy suggest that mutations may impair skeletal muscle growth. Using human muscle stem cells (MuSCs) carrying LMNA-CMD mutations, we observe impaired myogenic fusion with disorganized cadherin/β catenin adhesion complexes. We show that skeletal muscle from Lmna-CMD mice is unable to hypertrophy in response to functional overload, due to defective fusion of activated MuSCs, defective protein synthesis and defective remodeling of the neuromuscular junction. Moreover, stretched myotubes and overloaded muscle fibers with LMNA-CMD mutations display aberrant mechanical regulation of the yes-associated protein (YAP). We also observe defects in MuSC activation and YAP signaling in muscle biopsies from LMNA-CMD patients. These phenotypes are not recapitulated in closely related but less severe EDMD models. In conclusion, combining studies in vitro, in vivo, and patient samples, we find that LMNA-CMD mutations interfere with mechanosignaling pathways in skeletal muscle, implicating A-type lamins in the regulation of skeletal muscle growth.  相似文献   
995.
Gasoline engine emissions have been classified as possibly carcinogenic to humans and represent a significant health risk. In this study, we used MucilAir™, a three-dimensional (3D) model of the human airway, and BEAS-2B, cells originating from the human bronchial epithelium, grown at the air-liquid interface to assess the toxicity of ordinary gasoline exhaust produced by a direct injection spark ignition engine. The transepithelial electrical resistance (TEER), production of mucin, and lactate dehydrogenase (LDH) and adenylate kinase (AK) activities were analyzed after one day and five days of exposure. The induction of double-stranded DNA breaks was measured by the detection of histone H2AX phosphorylation. Next-generation sequencing was used to analyze the modulation of expression of the relevant 370 genes. The exposure to gasoline emissions affected the integrity, as well as LDH and AK leakage in the 3D model, particularly after longer exposure periods. Mucin production was mostly decreased with the exception of longer BEAS-2B treatment, for which a significant increase was detected. DNA damage was detected after five days of exposure in the 3D model, but not in BEAS-2B cells. The expression of CYP1A1 and GSTA3 was modulated in MucilAir™ tissues after 5 days of treatment. In BEAS-2B cells, the expression of 39 mRNAs was affected after short exposure, most of them were upregulated. The five days of exposure modulated the expression of 11 genes in this cell line. In conclusion, the ordinary gasoline emissions induced a toxic response in MucilAir™. In BEAS-2B cells, the biological response was less pronounced, mostly limited to gene expression changes.  相似文献   
996.
The biorelevant PyFALGEA oligopeptide ligand, which is selective towards the epidermal growth factor receptor (EGFR), has been successfully employed as a substrate in magnetic resonance signal amplification by reversible exchange (SABRE) experiments. It is demonstrated that PyFALGEA and the iridium catalyst IMes form a PyFALGEA:IMes molecular complex. The interaction between PyFALGEA:IMes and H2 results in a ternary SABRE complex. Selective 1D EXSY experiments reveal that this complex is labile, which is an essential condition for successful hyperpolarization by SABRE. Polarization transfer from parahydrogen to PyFALGEA is observed leading to significant enhancement of the 1H NMR signals of PyFALGEA. Different iridium catalysts and peptides are inspected to discuss the influence of their molecular structures on the efficiency of hyperpolarization. It is observed that PyFALGEA oligopeptide hyperpolarization is more efficient when an iridium catalyst with a sterically less demanding NHC ligand system such as IMesBn is employed. Experiments with shorter analogues of PyFALGEA, that is, PyLGEA and PyEA, show that the bulky phenylalanine from the PyFALGEA oligopeptide causes steric hindrance in the SABRE complex, which hampers hyperpolarization with IMes. Finally, a single-scan 1H NMR SABRE experiment of PyFALGEA with IMesBn revealed a unique pattern of NMR lines in the hydride region, which can be treated as a fingerprint of this important oligopeptide.  相似文献   
997.
Efforts to manufacture artificial cells that replicate the architectures, processes and behaviours of biological cells are rapidly increasing. Perhaps the most commonly reconstructed cellular structure is the membrane, through the use of unilamellar vesicles as models. However, many cellular membranes, including bacterial double membranes, nuclear envelopes, and organelle membranes, are multilamellar. Due to a lack of technologies available for their controlled construction, multilayered membranes are not part of the repertoire of cell-mimetic motifs used in bottom-up synthetic biology. To address this, we developed emulsion-based technologies that allow cell-sized multilayered vesicles to be produced layer-by-layer, with compositional control over each layer, thus enabling studies that would otherwise remain inaccessible. We discovered that bending rigidities scale with the number of layers and demonstrate inter-bilayer registration between coexisting liquid–liquid domains. These technologies will contribute to the exploitation of multilayered membrane structures, paving the way for incorporating protein complexes that span multiple bilayers.  相似文献   
998.
Pertussis toxin (PTX) is a required co-adjuvant for experimental autoimmune encephalomyelitis (EAE) induced by immunization with myelin antigen. However, PTX’s effects on EAE induced by the transfer of myelin-specific T helper cells is not known. Therefore, we investigated how PTX affects the Th17 transfer EAE model (Th17-EAE). We found that PTX significantly reduced Th17-EAE by inhibiting chemokine-receptor-dependent trafficking of Th17 cells. Strikingly, PTX also promoted the accumulation of B cells in the CNS, suggesting that PTX alters the disease toward a B-cell-dependent pathology. To determine the role of B cells, we compared the effects of PTX on Th17-EAE in wild-type (WT) and B-cell-deficient (µMT) mice. Without PTX treatment, disease severity was equivalent between WT and µMT mice. In contrast, with PTX treatment, the µMT mice had significantly less disease and a reduction in pathogenic Th17 cells in the CNS compared to the WT mice. In conclusion, this study shows that PTX inhibits the migration of pathogenic Th17 cells, while promoting the accumulation of pathogenic B cells in the CNS during Th17-EAE. These data provide useful methodological information for adoptive-transfer Th17-EAE and, furthermore, describe another important experimental system to study the pathogenic mechanisms of B cells in multiple sclerosis.  相似文献   
999.
Combustion, Explosion, and Shock Waves - Two approaches to describing an expanding spherical flame are compared. Processing of a large amount of experimental data shows that the approach using as a...  相似文献   
1000.
Beyond the catalytic activity of nanocatalysts, the support with architectural design and explicit boundary could also promote the overall performance through improving the diffusion process, highlighting additional support for the morphology-dependent activity. To delineate this, herein, a novel mazelike-reactor framework, namely multi-voids mesoporous silica sphere (MVmSiO2), is carved through a top-down approach by endowing core-shell porosity premade Stöber SiO2 spheres. The precisely-engineered MVmSiO2 with peripheral one-dimensional pores in the shell and interconnecting compartmented voids in the core region is simulated to prove combined hierarchical and structural superiority over its analogous counterparts. Supported with CuZn-based alloys, mazelike MVmSiO2 nanoreactor experimentally demonstrated its expected workability in model gas-phase CO2 hydrogenation reaction where enhanced CO2 activity, good methanol yield, and more importantly, a prolonged stable performance are realized. While tuning the nanoreactor composition besides morphology optimization could further increase the catalytic performance, it is accentuated that the morphological architecture of support further boosts the reaction performance apart from comprehensive compositional optimization. In addition to the found morphological restraints and size-confinement effects imposed by MVmSiO2, active sites of catalysts are also investigated by exploring the size difference of the confined CuZn alloy nanoparticles in CO2 hydrogenation employing both in-situ experimental characterizations and density functional theory calculations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号